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ABSTRACT   

This study presents a comparative evaluation of Physics-Informed Neural Networks 
(PINNs) and conventional data-driven models for solving a range of geotechnical 
engineering problems. Unlike conventional approaches, PINNs incorporates governing 
equations into the loss function, enabling the model to honor the underlying physics of 
the physical system even with limited data. Through a series of benchmark problems and 
real-world case studies, we assess each model's performance in terms of accuracy, and 
physical interpretability. The soil parameters and training data are estimated from 
available SPT/CPT readings and field experiments. The findings suggest that PINNs 
offer a robust alternative for geotechnical modeling tasks where domain knowledge can 
be encoded through differential equations. This work highlights the advantages and 
limitations of both modeling approaches and provides practical guidelines for selecting 
the appropriate method based on data availability and desired interpretability. 
 
 
1. INTRODUCTION 
 

Rapid advancements in machine learning (ML) have generated increasing 
interest in its application to geotechnical engineering. Among the various approaches, 
data-driven models are the most common, leveraging large datasets to capture complex, 
nonlinear soil–structure interactions that are difficult to represent using conventional 
methods (Wang and Goh, 2021; Liu et al., 2024; Ke et al., 2025). However, their 
predictive performance is highly dependent on the availability of high-quality training data, 
which in geotechnical contexts is often scarce, costly to obtain, and specific to individual 
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sites. Moreover, these models are susceptible to training noise, which can introduce bias 
and further limit their ability to generalize to unseen scenarios. 

This study evaluates the feasibility of applying physics-informed neural networks 
(PINNs) as a potential alternative to commonly used data-driven machine learning 
models. Conventional data-driven models learn directly from experimental or field 
measurements without incorporating the governing physical laws, making them highly 
sensitive to data quality and, in some cases, introducing subjective bias. In contrast, 
PINNs integrate governing equations into the learning process, enabling physically 
consistent predictions even when data are limited or noisy, and improving generalization 
to conditions beyond the training range. By systematically comparing PINNs with purely 
data-driven approaches across representative geotechnical case studies, this work 
seeks to establish a technical basis for selecting the most appropriate modeling strategy 
in data-limited, physics-constrained engineering environments. 
 
 
2. METHODOLOGY 
 

Two key distinctions between the two machine learning paradigms lie in their 
underlying neural network architectures and the formulation of their loss functions. In 
data-driven models, the architecture is optimized solely for mapping input–output 
relationships (see Fig. 1), with the loss function typically defined by statistical error 
metrics (e.g., RMSE) between predicted and observed values.  

 
In contrast, physics-informed neural networks (Raissi and Karniadakis, 2019) 

incorporate additional architectural components see Fig. 2), and augmented loss terms 
that embed governing partial differential equations, boundary conditions, and initial 
conditions directly into the training process, thereby enforcing physical consistency 
alongside data fidelity. 
 

 

Fig. 1. Typical data-driven neural network architecture 
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In machine learning, the loss function (ℒ) quantifies the discrepancy between 
the model’s predictions and desired outcome. For purely data-driven models, the loss 
function is typically empirical-risk-based, computed from data misfit metrics between the 
input (usually observed data value) and output (predicted by the model). In contrast, 
PINNs employ a composite loss function that synthesizes multiple terms such as data 
fidelity loss, physical residual loss and initial and boundary condition loss. This integration 
transforms the training problem from a purely statistical fitting task into a constrained 
optimization problem in function space, which can improve generalization in data-scarce 
or noisy scenarios. 

 

 

Fig. 2. Physics-informed neural network architecture 
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Fig. 3. Key difference in modeling of the loss functions between the data-driven 
model vs. the physics informed model 

 
In this study, the comparative performance of the two modeling approaches is 

assessed through the prediction of lateral displacement response for a pile idealized as 
a Timoshenko beam (Kapoor et al., 2024) resting on a nonlinear Winkler foundation.  

 
For a regular shafted pile embedded in a homogenous layer of soil, the 

appropriate differential equation that can model the soil-structure behavior is the beam 
on nonlinear Winkler foundation (refer to Fig. 4). Here (q) as a function of (x) represents 

the applied horizontal load,  𝐸𝑝 𝐼𝑝
𝑑4𝑤(𝑥)

𝑑𝑥4
 represents the flexural capacity of the pile and 

the nonlinear soil resistance is represented by (p) function of (x, w). The equation is then 
rearranged to create the residual equation used in the loss function for the PINNs model. 
The computational domain spans the entire length of the pile, free ended and embedded. 
The boundary conditions at the top tip is free while the bottom embedded tip if fixed. 

 
 

 

Fig. 4. Governing physics of a beam embedded in nonlinear Winkler foundation 
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3. RESULTS AND DISCUSSION 
 
 

The comparative analysis presented in this study reveals that the physics-
informed neural network (PINN) consistently outperforms the purely data-driven model 
across all evaluated geotechnical scenarios. This superiority is observed in multiple 
performance dimensions, including lower root mean squared error (RMSE) and mean 
absolute error (MAE) on test datasets, reduced physics residual norms reflecting 
improved compliance with governing equations, and enhanced generalization to 
extrapolative conditions beyond the training domain.  

 
Furthermore, the PINN exhibited greater robustness under data-scarcity and 

noise-contaminated training scenarios, maintaining physically consistent predictions 
where the data-driven model showed significant degradation in accuracy and stability.  

 

 
Fig. 5. Comparison of predicted lateral pile head displacement between the data-

driven model vs the physics-informed model 
 
Shown in Fig. 5 is the comparison of predictive performance between the two 

models. The ground truth curve represents the baseline reference, corresponding in this 
context to the pile head displacement profile obtained from a high-fidelity finite element 
method (FEM) simulation. The PINN-predicted response closely replicated the baseline 
curve, not only matching the overall displacement magnitude but also accurately 
capturing the curvature and inflection points along the profile. This high level of 
agreement can be attributed to the PINN’s incorporation of the governing beam-on-
nonlinear-Winkler-foundation equations into the loss function, which constrains the 
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solution space to physically admissible responses, even under limited or noisy training 
data. 

 
In contrast, the purely data-driven model produced predictions that, while 

generally following the trend of the baseline curve, exhibited noticeable deviations in both 
amplitude and gradient, particularly in regions with higher curvature. These 
discrepancies likely stem from the absence of embedded physical constraints, which 
makes the model more reliant on the statistical patterns present in the training dataset.  

 
 

 
Fig. 6. Evolution of residuals over training epochs metrics for PINNs and the data-

driven model 
 

Fig. 6 illustrates the evolution of residual errors over training epochs for both the 
PINN and the purely data-driven model. The data-driven model exhibited a higher initial 
error compared to the PINN in the early training stages, likely due to its reliance solely 
on empirical risk minimization. Without the guidance of embedded physical constraints, 
the optimization process for the data-driven model must infer the entire functional 
mapping from sparse and potentially noisy data, leading to slower convergence and 
larger initial parameter misalignment. In contrast, the PINN began with lower residual 
loss because the incorporation of governing differential equations into its composite loss 
function effectively regularizes the hypothesis space. This physics-constrained 
initialization guides the network towards physically admissible solution manifolds from 
the outset, reducing the parameter search space and accelerating convergence. The 
persistently lower residual loss observed for the PINN throughout training reflects 
enhanced training stability, attributable to the regularization effect of the physics-based 
loss terms, which mitigate overfitting and improve gradient conditioning during 
backpropagation. 
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Fig. 7. Performance of the data-driven model 
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Fig. 8. Performance of the physics-informed model 

 

Figs. 7 and 8 present the predicted versus true response profiles for the data-
driven and physics-informed models, respectively. In both cases, the scatter points lie 
close to the 1:1 reference line, indicating a high coefficient of determination (R2) and 
strong correlation between predictions and ground truth values. This close alignment 
confirms the generally high predictive capability of both models, consistent with the pile 
head displacement prediction trend reported in Fig. 6. However, the PINNs model still 
exhibits marginally superior performance, as evidenced by a tighter clustering of 
predictions around the reference line, reduced dispersion, and lower mean absolute 
deviation—attributes indicative of improved generalization and lower variance in the 
model’s predictive mapping. 

The histogram plots further underscore these differences. For the data-driven 
model, the error distribution is slightly positively skewed, suggesting a systematic 
tendency to underpredict in certain regions, likely due to insufficient representation of 
case conditions in the training set. In contrast, the PINN’s histogram approximates a 
Gaussian distribution centered near zero, reflecting unbiased error characteristics and 
symmetric variability. This behavior is consistent with the regularization effect of the 
physics-informed loss terms, which constrain the hypothesis space and promote 
statistically homoscedastic residuals, thereby reducing systematic bias and enhancing 
the reliability of the model across the input domain. 

The bar graph presents the percentage deviation from the baseline case across 
multiple simulation runs. The PINN consistently exhibits deviations clustered more 
closely around the zero-error line, indicating a higher degree of predictive fidelity relative 
to the FEM-derived reference solution. This tighter error concentration reflects both 
reduced bias and lower variance in the model’s predictions, highlighting its superior 
accuracy and stability when compared to the purely data-driven model, which 
demonstrates larger and more scattered deviations indicative of less consistent 
generalization performance. 

 

4. CONCLUSION 
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This study demonstrates that physics-informed neural networks (PINNs) 
consistently outperform purely data-driven models in geotechnical applications where 
governing physical laws are well established and data availability is limited. By 
embedding partial differential equations, boundary conditions, and material behavior 
constraints directly into the loss function, PINNs generate predictions that are not only 
statistically accurate but also physically admissible and interpretable. This dual fidelity 
enhances model robustness, reduces bias, and improves generalization to unseen 
conditions, even under noise-contaminated or data-scarce scenarios. Applied to the 
prediction of lateral load–displacement behavior for a pile modeled as a Timoshenko 
beam on a nonlinear Winkler foundation, the PINN framework successfully replicated the 
finite element method (FEM) baseline response with lower residuals, unbiased error 
distribution, and reduced percentage deviation across simulations. These results 
highlight the potential of PINNs as a reliable, physics-consistent alternative to 
conventional machine learning models in data-limited, physics-constrained geotechnical 
engineering contexts. 
 
 
 
ACKNOWLEDGEMENT 
 
 
This research was supported by the Basic Science Research Program through the 
National Research Foundation of Korea (NRF), funded by the Ministry of Education (RS-
2021-NR060134). Additionally, this work was supported by the Human Resources 
Development of the Korea Institute of Energy Technology Evaluation and 
Planning(KETEP) grant funded by the Korea government Ministry of Trade, Industry & 
Energy (No. RS-2021-KP002506). 
 
 
 
REFERENCES 
 
 
Guiyun, X. I. A., & Qingyuan, Z. E. N. G. (2015). Timoshenko beam theory and its applications. 

Mechanics in Engineering, 37(3), 302-316. 
Kapoor, T., Wang, H., Núñez, A., & Dollevoet, R. (2024). Transfer learning for improved 

generalizability in causal physics-informed neural networks for beam simulations. 
Engineering Applications of Artificial Intelligence, 133, 108085. 

Ke, Q., Li, D. Q., & Tang, X. S. (2025). NGBoost-based probabilistic surrogate modeling for 
rockfill dam settlements considering rockfill spatial variability. Computers and Geotechnics, 
188, 107536. 

Liu, X., Liu, Y., Yang, Z., & Li, X. (2024). A novel dimension reduction-based metamodel 
approach for efficient slope reliability analysis considering soil spatial variability. Computers 
and Geotechnics, 172, 106423. 

Ö chsner, A. (2021). Timoshenko beam theory. In Classical Beam theories of structural 
mechanics (pp. 67-104). Cham: Springer International Publishing. 



The 2025 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM25)
BEXCO, Busan, Korea, August 11-14, 2025

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep 
learning framework for solving forward and inverse problems involving nonlinear partial 
differential equations. Journal of Computational physics, 378, 686-707. 

Wang, S., Sankaran, S., Wang, H., & Perdikaris, P. (2023). An expert's guide to training physics-
informed neural networks. arXiv preprint arXiv:2308.08468. 

Wang, K., Tang, H., Wang, R., & Zhang, J. M. (2024). Development and evaluation of a practical 
nonlinear elastic constitutive model for rockfill dam deformation simulation based on 
monitoring results. Acta Geotechnica, 19(6), 3467-3485. 

 


